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A B S T R A C T   

In recent years, there has been discussion and controversy relating to the treatment of inconclusive decisions in 
forensic feature comparison disciplines when considering the reliability of examination methods and results. In 
this article, we offer a brief review of the various viewpoints and suggestions that have been recently put forth, 
followed by a solution that we believe addresses the treatment of inconclusive decisions. We consider the issues 
in the context of method conformance and method performance as two distinct concepts, both of which are 
necessary for the determination of reliability. Method conformance relates to an assessment of whether the 
outcome of a method is the result of the analyst’s adherence to the procedures that define the method. Method 
performance reflects the capacity of a method to discriminate between different propositions of interest (e.g., 
mated and non-mated comparisons). We then discuss implications of these issues for the forensic science 
community.   
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1. Introduction 

The forensic science community faces scrutiny from legal and sci
entific scholars, who question (measures for) the reliability1 of forensic 
examination methods, with particular emphasis on those that rely pre
dominantly on visual observation and human judgment (e.g., feature 
comparison methods used in pattern evidence examination, such as 
friction ridge, firearms and toolmarks, footwear, tire tracks, 

handwriting) [1,2]. In the 1993 Supreme Court ruling in Daubert v. 
Merrell Dow Pharmaceuticals, Inc. [3], the Court declared that scientific 
evidence must be relevant and reliable, and provided examples of factors 
to consider when evaluating its admissibility, such as testability, peer 
review, error rates, standards, and acceptance in the scientific commu
nity. Largely in response to Daubert, error rates (e.g., false positive or 
false negative rates) began to receive increased attention as a key 
measure of performance. 

In 2009, the National Research Council (NRC) report on forensic 
science renewed the call for determinations of error rates [1] and set in 
motion efforts to design and execute large-scale testing schemes to 
evaluate reliability across forensic science disciplines, with an initial 
emphasis on friction ridge and firearms analyses [4–10]. Likewise, the 
2016 report by the President’s Council of Advisors on Science and 
Technology (PCAST) emphasized the need for empirical measures of 
performance and appropriate determinations of error rates as factors 
underlying determinations of validity and reliability [2]. 

The focus on error rates as a primary measure of method perfor
mance is generally satisfactory when experts report results using a bi
nary scale, such as identification or exclusion. In this context, the false 
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1 In this paper, the term “reliable” is used as an all-encompassing term that relates to the extent to which a method can be relied upon to produce accurate and 
consistent results, and includes the concepts of “validity,” “reproducibility,” and “repeatability.” 
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positive rate is defined as the proportion of times the method results in 
an “identification” in non-mated comparisons (e.g., in a validation 
study) and the false negative rate is defined as the proportion of times 
the method results in an “exclusion” in mated comparisons.2 However, 
few feature comparison disciplines operate using a binary scale. Most 
use a three-point (or more) scale, which is some variation of identifi
cation, inconclusive, or exclusion.3 Even with the additional option of 
inconclusive, it might seem natural to apply the classical definitions of 
false positive rate and false negative rate. However, careful consider
ation quickly reveals that it is unsatisfactory to use error rates alone as 
the metric of performance for a method in these feature comparison 
disciplines. 

Consider the following hyperbolic example to illustrate this point 
(Tables 1a and 1b).4 Suppose we have two methods with the following 
outcomes for mated and non-mated comparisons. 

In Tables 1a and 1b, we see that neither Method 1 nor Method 2 
results in any identification decisions for non-mated comparisons or 
exclusion decisions for mated comparisons. Therefore, both methods 
have the ideal false positive and false negative rates of 0 % (or corre
spondingly, a seemingly ideal total combined error rate of 0 %). The 
usefulness of the two methods, however, could not be further apart. 

The purpose of the forensic examination (e.g., in feature comparison 
disciplines) is to help others determine whether or not two patterns 
could have originated from the same source. Thus, a method’s utility is 
characterized by how successfully the method’s output distinguishes 
non-mated comparisons from mated comparisons. Method 1 leads to an 
inconclusive result for every comparison. This outcome means that 
Method 1 does not provide any information to help a user of the reported 
result (e.g., factfinder) determine whether a given comparison is non- 
mated or mated. Method 2, however, perfectly distinguishes all non- 
mated comparisons from mated comparisons. That is, a user of the re
ported result who inferred a comparison was non-mated if the result 
from Method 2 was exclusion and inferred a comparison was mated if 
the result was identification would have been correct every time. This 
example illustrates that, when a conclusion scale is not binary, false 
positive and false negative rates alone do not accurately convey how 
successfully one could use the method output to distinguish non-mated 
comparisons from mated comparisons and therefore do not adequately 

characterize method performance.5 

Nevertheless, perhaps motivated by the fact that the term “error 
rates” is explicitly mentioned in the Daubert decision as well as the NRC 
and PCAST reports, the desire to represent method performance in terms 
of error rates has continued. Consequently, disagreements over the 
treatment of inconclusive decisions also remain. To avoid the misleading 
nature of classical definitions for false positive rate and false negative 
rate for non-binary conclusion scales, alternative definitions for false 
positive and false negative rates have been proposed—primarily mani
festing in various ways of treating inconclusive outcomes. For example, 
the PCAST suggested omitting inconclusive decisions altogether so that 
(error) rate estimates are based on the proportion of conclusive exami
nations rather than the proportion of all examinations [2]. 

Although PCAST touched on this issue in 2016, controversy sur
rounding the treatment of inconclusive decisions began to surface in 
2019 when Dror and Langenburg raised concern that there is a lack of 
transparency and accountability on the use of inconclusive decisions and 
recommended that the forensic science community establish criteria to 
know whether and when inconclusive decisions are “justifiable” [11]. 
This was followed by recommendations by Dror and Scurich in 2020 in 
which inconclusive decisions that did not conform to some established 
criteria ought to be counted as errors [12]. Not long after, several 
different articles were published expressing various viewpoints relating 
to the treatment of inconclusive decisions [13–18]. 

When deliberating on this issue, nearly every possible option has 
been proposed, including: inconclusive decisions be ignored altogether, 
inconclusive decisions always be considered correct, inconclusive de
cisions always be considered incorrect, inconclusive decisions be 
considered correct in some situations and incorrect in other situations, 
and inconclusive decisions be considered neither correct nor incorrect. 
Consequently, we are left with an array of proposed definitions of false 
positive and false negative rates that can lead to wildly different esti
mates of error rates, and, therefore, different representations and in
terpretations of the reliability of forensic science results, all with 
potential consequences regarding the admissibility of such evidence in 
judicial proceedings. 

2. Discussion 

When considering how inconclusive decisions should be treated (or 
any outcome for that matter), it is important to first take a step back and 
frame the context of the situation. There are two important things to 
consider: 

First, in forensic casework, a particular issue might be disputed and 
the ground-truth of that issue (e.g., true source-origin of a particular set 
of compared items) is unknown and, oftentimes, unknowable. Further, 
items or impressions from crime scenes are often presented to analysts in 

Table 1a 
A 2 × 3 table representing performance metrics relating to hypothetical Method 
1 where all reported outcomes for both mated and non-mated comparisons are 
“inconclusive.”  

Method 1 Identification Inconclusive Exclusion 

Mated Comparisons 0 % 100 % 0 % 
Non-Mated Comparisons 0 % 100 % 0 %  

Table 1b 
A 2 × 3 table representing performance metrics relating to hypothetical Method 
2 where all reported outcomes for mated comparisons are “Identification” and 
all non-mated comparisons are “Exclusion.”  

Method 2 Identification Inconclusive Exclusion 

Mated Comparisons 100 % 0 % 0 % 
Non-Mated Comparisons 0 % 0 % 100 %  

2 Non-mated comparisons refer to items that were known to have been made 
by different sources. Mated comparisons refer to items that were known to have 
been made by the same source.  

3 We recognize there are different ways of conducting feature comparisons 
and communicating results (e.g., probabilistic, categoric). In this paper, we 
limit our discussion to the use of conclusion scales that include inconclusive as a 
legitimate response option since it represents traditional practices in many 
feature comparison disciplines. Further, we recognize conclusion scales vary in 
terms of the number of response options available (e.g., some might have 
multiple derivations of inconclusive, levels of support, or options to declare 
items “not suitable” for comparison). For simplicity, we focus our discussion on 
a single catch-all class of “inconclusive” response options that indicates a 
comparison outcome that is not an explicit assertion of the ground-truth state of 
the compared items (e.g., comparison outcomes other than “identification” or 
“exclusion”).  

4 In this example, we use we use percentages of total response outcomes for 
mated and non-mated comparisons for illustrative purposes, but, in real studies, 
actual numbers should be provided to enable estimation of uncertainty. 

5 A similar example could be constructed to show that the alternative metrics 
of sensitivity (true positive rate) and specificity (true negative rate) also do not 
adequately characterize method performance. Such examples illustrate the 
perils of trying to summarize the performance of a method with a non-binary 
range of conclusions with the same number of parameters as a method with a 
binary range of conclusions. Two additional independent parameters or rates 
are required to fully characterize method performance for each element added 
to a binary conclusion scale. 
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a partial, degraded, or low-quality state. Thus, it is certainly conceivable 
that forensic analysts will encounter situations where an examination 
does not yield sufficient information to support a conclusive opinion as 
to the potential source. Thus, an inconclusive determination is a 
possible, and sometimes necessary and important, outcome of the ex
amination to ensure a binary decision (e.g., exclusion or identification) 
is not forced where it is not warranted and achievable. We recognize that 
this point is largely uncontroversial. What is contentious, however, is 
when inconclusive determinations might be warranted or justifiable and 
how inconclusive determinations should be treated when assessing the 
reliability of a method. 

Second, users of forensic results (e.g., factfinders) are presented with 
the outcome of an examination conducted by a particular analyst and 
tasked with making inferences and decisions about the truth of various 
propositions in question (e.g., whether or not two patterns originated 
from the same source). Users of the reported result must therefore weigh 
the reliability of the result by considering at least three questions.  

(1) What method did the analyst apply when conducting the forensic 
examination?  

(2) How effective is that method at discriminating between the 
propositions of interest?  

(3) How relevant is the data describing the discriminability (i.e., 
diagnostic capacity) of that method (generally) to the examina
tion in the case at hand (specifically)? 

To address these questions, information about whether the analyst 
conformed to a particular method as well as measures relating to the 
performance of that method are needed. In this context, we distinguish 
between two important concepts: method conformance and method 
performance.  

• Method conformance relates to assessments of whether the outcome 
of a particular method is the result of the analyst’s adherence to the 
procedures that define that method.  

• Method performance relates to measures that reflect the extent to 
which the outcome of a particular method can effectively distinguish 
between different propositions of interest (e.g., between same-source 
and different-source comparisons). 

Method performance includes information relating to both 

Table 3a 
A 2 × 3 table representing performance metrics relating to hypothetical Method 
3.  

Method 3 Identification Inconclusive Exclusion 

Mated Comparisons 89 % 10 % 1 % 
Non-Mated Comparisons 1 % 40 % 59 %  

Table 3b 
A 2 × 3 table representing performance metrics relating to hypothetical Method 
4.  

Method 4 Identification Inconclusive Exclusion 

Mated Comparisons 59 % 40 % 1 % 
Non-Mated Comparisons 1 % 10 % 89 %  

Table 2 
Brief description of recent articles discussing the treatment of inconclusive decisions in forensic science.   

Articles Description of Viewpoints 

1 Dror and Langenburg (2019) 
[11] 

Called for greater transparency and accountability for the use of inconclusive decisions. An option of inconclusive should not be available 
when there is sufficient information to make a conclusive decision to avoid an “easy way out.” They supported developing criteria to 
determine situations where fingerprint examiners would not be allowed to choose inconclusive and to use statistical models or qualified 
opinion scales that provide greater distinction of the perceived strength of evidence within the broad inconclusive category along with blind 
verification to assess appropriateness of an inconclusive decision. 

2 Dror and Scurich (2020) [12] Recognized the need for inconclusive decisions in some cases but claimed that these decisions ought to be considered correct or incorrect based 
on whether the evidence contains sufficient quantity and quality of information for a conclusive determination. They proposed either using a 
panel of independent experts or consensus data from a study to determine which comparisons should be deemed as inconclusive. 

3 Weller and Morris (2020) [13] Suggested that the rates of all decision types be reported as they relate to ground-truth with the recognition that there are two ground-truth 
states and three meaningful response categories. They expressed concerns with Dror and Scurich (2020) views of categorizing every result as 
correct or erroneous and representing measures of reproducibility as measures of accuracy. 

4 Hofmann et al. (2020) [14] Outlined and critiqued four approaches to address inconclusive decisions in calculating error rates, such that inconclusive decisions are: (1) 
ignored altogether, (2) considered as correct, (3) considered as incorrect, and (4) considered equivalent to an exclusion. They distinguished 
between “source-specific” and “decision-specific” metrics, suggesting they should be used for different purposes (method performance and 
court testimony). 

5 Biedermann and Kotsoglou 
(2021) [15] 

Argued that Dror and Scurich (2020) views conflate the ontological level of analysis (where ground-truth is fixed) with the epistemic level of 
analysis (where ground-truth remains uncertain). They warned against the artificial category of a “forensically correct” determination that 
does not have a ground-truth. They encouraged monitoring all response types as they relate to ground-truth so that the true limits of the 
method can be understood. 

6 Arkes and Koehler (2021) [16] Emphasized that inconclusive decisions are a statement about the insufficiency of available evidence and are neither correct nor incorrect as 
there is no applicable ground-truth. They proposed the use of signal detection theory as a framework for understanding the role inconclusive 
decisions play and opposed scoring inconclusives as either correct or incorrect when computing error rates. 

7 Dorfman and Valliant (2022) 
[17] 

Described an ideal “mechanical scheme” for establishing an objective basis to categorize inconclusive decisions as errors using objective 
measurements, statistical algorithms, and likelihood theory and illustrated how this could be used to assess overall error rates as described by 
Dror and Scurich (2020). Until such measures are available, they suggested blind testing schemes be employed to estimate error rates and that 
inconclusive decisions must be regarded as potential errors. 

8 Guyll et al. (2023) [18] Argued that inconclusive decisions are different because they forgo any assertion as to the ground-truth state of the evidence. They advocated 
for the rates of all decision types to be reported as they relate to ground-truth, conclusive and inconclusive alike, to make results useful for the 
widest range of purposes. They also suggested that the likelihood ratio of a decision (e.g., calculated in terms of “the proportion of all same- 
source comparisons that are given a particular decision divided by the proportion of all different-source comparisons that are given that same 
decision”) be used as a metric for expressing its “probative value.” They recognized, however, that evaluations of a technique for designating 
“decision correctness” (such as the use of a decision rule, consensus opinion, or similarity measure with cutoff criterion) may be useful in some 
contexts, such as training or determining appropriateness of examiners’ decision in relation to evidence quality.  
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discriminability and reproducibility of outcomes produced by the method.6 

Importantly, measures of reproducibility provide the gauge by which 
measures of discriminability (based on outcomes from multiple analysts 
generally) are relevant to an outcome by a particular analyst (specif
ically) as well as the adequacy of the procedures that define the 
method.7 Further, while measures of method performance are the means 
by which methods are deemed “acceptable” for the intended application 
(e.g., from a validation study),8 those measures of performance are only 
applicable to the extent that assessments of conformance are possible. 
Thus, determinations of reliability require consideration of results in the 
context of both method conformance and method performance. 

In reviewing previously published viewpoints, we see several at
tempts to provide a better way of assessing the reliability of analysts’ 
decisions. However, there are three general issues that we consider to 
have caused many of these prior viewpoints to be incomplete: (1) error 
rates alone (i.e., false positive and false negative rates) have been used as 
primary measures of method performance despite being unsuitable for 
non-binary conclusion frameworks, (2) measures of reproducibility (or 
other factors that do not consider decision outcomes in relation to 
ground-truth) have been conflated with measures of discriminability, 
and (3) assessments of method conformance have not been fully 
considered as a necessary factor for determinations of reliability for a 
particular case. A brief description of the viewpoints from eight different 
articles is provided in Table 2. A summary assessment of each article and 
a more detailed discussion of these three issues follows.9 

Dror and Langenburg (2019) [11], Dror and Scurich (2020) [12], 
Hofmann et al. (2020) [14], and Dorfman and Valliant (2022) [17] 
focused predominantly on the use of error rates as primary measures of 
performance. In doing so, they offered multiple alternative definitions of 
error rates through different treatments of inconclusive responses. These 
alternative definitions conflate (explicitly or implicitly) measures of 
reproducibility (or other factors that do not consider decision outcomes 
in relation to ground truth) with measures of discriminability (i.e., 
suggesting that analysts’ decisions that are not consistent with majority 
or expert panels, or do not conform to method-specific decision criteria, 
can be represented as erroneous outcomes). The decision-specific met
rics discussed by Hofmann et al. [14] are affected by the prior odds of 
mated versus non-mated samples. For a performance study, this is 
determined by the arbitrary choice of the ratio of the respective com
parisons. For court testimony, the evaluation of prior odds is typically 
outside the purview of the forensic evaluation. Thus, such 
decision-specific metrics do not provide clear information regarding a 
method’s ability to discriminate between the propositions of interest. 
Arkes and Koehler (2021) [16] seemed to implicitly perpetuate the use 
of error rates as primary measures of performance. They did, however, 
touch on the concept of method conformance as distinct from method 
performance. Weller and Morris (2020) [13], Biedermann and Kotso
glou (2021) [15], and Guyll et al. (2023) [18] recognized the misleading 
and incomplete nature of error rates when used as sole measures of 
method performance for non-binary conclusion scales and instead 
advocated for presenting all decision outcomes when representing per
formance. Guyll et al. [18] touched on the concept of method 

conformance as distinct from method performance. However, framing 
conformance considerations as “decision correctness” conflates the 
concepts and may cause confusion. Guyll et al. [18] went further and 
proposed an alternative non-error rate metric—a likelihood ratio for 
each possible result—that can help convey how successfully one could 
use the method output to distinguish non-mated comparisons from 
mated comparisons. 

2.1. Issue 1: focusing solely on two (error) rates 

The first issue of concern is the focus on two (error) rates to represent 
method performance for non-binary conclusion scales. This approach 
overlooks important details about the performance of the method, and 
the array of proposals for different ways of computing false positive and 
false negative rates could be seen as a discussion of which details should 
be overlooked. That is, using two error rates as a sole measure of per
formance loses information relative to presenting the rate of each de
cision level (e.g., exclusion, inconclusive, identification) for non-mated 
comparisons and for mated comparisons (e.g., a 2 × 3 table, repre
senting the two ground-truth states and three possible decision out
comes, as illustrated by Tables 1a and 1b). This is evident by noting that, 
regardless of what definitions are adopted for false positive rate and 
false negative rate, the full 2 × 3 table is not recoverable from these two 
numbers. For each of the proposed approaches for computing error 
rates, examples can be readily constructed of two methods that produce 
identical error rates but have different abilities to discriminate non- 
mated comparisons from mated comparisons or have different levels 
of reproducibility. Thus, for non-binary conclusion scales, error rates 
alone do not provide sufficient information for characterizing method 
performance (i.e., discriminability and reproducibility). This issue of 
losing information also extends to other summaries of performance 
where the full 2 × 3 table is not recoverable, such as the area under the 
receiver operator characteristic curve (AUC) or empirical cross entropy 
(ECE) [19]. 

Additionally, computing error rates raises the question of how to 
label inconclusive decisions. This has led to the various viewpoints 
summarized in Table 2 and some controversy because inconclusive de
cisions are not necessarily correct or incorrect. A “correct” decision is 
one that accurately represents the true source-origin state of items being 
compared. An “incorrect” decision is one that falsely represents the true 
source-origin state, resulting in an error (i.e., falsely asserting that two 
impressions originated from the same source or falsely asserting that two 
impressions originated from different sources). An inconclusive deci
sion, on the other hand, is an outcome of the examination for which an 
assertion about the source-origin state of the items being compared was 
not explicitly made. Thus, an inconclusive decision is neither a correct 
nor erroneous representation of the true source-origin state. Other 
summaries, such as AUC or ECE offer an advantage in the sense that they 
do not require such binary labels; however, any summary from which 
the 2 × 3 table cannot be reconstructed is unsuitable for providing a 
complete characterization of a method’s performance in discriminating 
between the propositions of interest. 

Information regarding method performance should help others 
assess what weight to give to the method’s result in a given case (for 
which ground-truth is not known). For instance, as noted by Guyll et al. 
[18], one could consider the “probative value” of the result by assessing 
the likelihood ratio for the analyst’s decision using data collected under 
relevant conditions (e.g., approximated by calculating the portion of all 
mated comparisons for a particular decision divided by the portion of all 
non-mated comparisons for the same decision). This requires a complete 
and transparent representation of all possible outcomes as they relate to 
ground-truth of the compared items under specified conditions. Thus, 
when considering a more suitable way of conveying performance 
characteristics, we agree with the viewpoints and suggestions put forth 
by Weller and Morris [13], Biedermann and Kotsoglou [15], and Guyll 
et al. [18]—to provide the entire table of outputs representing all 

6 The term “discriminability” refers to the extent to which the outcomes of a 
method can accurately distinguish between non-mated and mated comparisons. 
The term “reproducibility” refers to the extent to which the outcomes of a 
method are consistently produced.  

7 This is important when analysts vary in their performance and measures of 
discriminability and reproducibility are based on aggregate outcomes from 
multiple analysts.  

8 The decision by a user or a group of users that a method is acceptable for its 
intended purpose does not obligate or constrain others (e.g., factfinders) to 
accept that determination when they are later tasked with evaluating the evi
dence in the context of a case.  

9 We do not claim this to be a comprehensive list. The eight articles presented 
here illustrate a range of viewpoints on the topic. 
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possible outcomes (e.g., a 2 × 3 table, such as that represented in 
Tables 1a, 1b, 3a, and 3b).10 This provides greater transparency about 
the method’s performance and enables users of the information to more 
effectively discriminate between propositions of interest (i.e., mated 
versus non-mated). 

Consider the following 2 × 3 tables describing results of validation 
testing from hypothetical methods 3 and 4, reflected in Tables 3a and 3b. 

There are several performance summaries for which methods 3 and 4 
appear equivalent (e.g., error rates, AUC).11 However, the complete 
tables reveal several important differences between the methods. 
Table 3a indicates that inconclusive decisions from method 3 occur at a 
rate among non-mated comparisons that is four times greater than the 
rate among mated comparisons. Table 3b, however, indicates that 
inconclusive decisions from method 4 occur at a rate among mated 
comparisons that is four times greater than the rate among non-mated 
comparisons. Thus, inconclusive decisions have different implications 
depending on whether they resulted from method 3 or method 4. The 
implied “probative value” of inconclusive decisions between methods 3 
and 4 differ by a factor of 16. Differences also occur for identification 
and exclusion decisions. Decisions made by factfinders (or others within 
the criminal justice system, such as investigators, litigators, or judges) in 
response to an expert’s opinion in a given case may depend on whether 
the expert applied method 3 or 4 (i.e., they may make different decisions 
depending on whether Table 3a or 3b is provided). This example illus
trates the general fact that any summary of method performance from 
which the 2 × 3 table cannot be inferred risks losing information 
important for assessing what weight to give an expert’s opinion in a 
given case. 

Presenting the complete 2 × 3 table ensures that users of the infor
mation can make the best possible decision for the relevant conditions in 
the case. This is particularly true when inconclusive decisions are not 
symmetrically distributed between mated and non-mated comparisons. 
Excluding inconclusive decisions, combining them into a different 
category of decisions (for purposes of labeling them as correct or 
incorrect decisions),12 or only representing incomplete summary sta
tistics reflecting a subset of performance characteristics of the method 
(such that the 2 × 3 table cannot be reconstructed) prevents a mean
ingful interpretation of the performance of the method. Instead, such 
treatment of inconclusive decisions causes those performance 

characteristics to be represented in a distorted and potentially 
misleading way that can ultimately lead to fewer accurate factfinder 
decisions overall. Appendix I discusses this in more detail based on two 
pillars of statistical inference dealing with optimal decision 
making—Bayesian decision theory [20,21] and the Neyman-Pearson 
Lemma [22]. 

2.2. Issue 2: conflating reproducibility with discriminability 

The second issue of concern is the suggestion that measures of 
reproducibility can be used as the basis for representing measures of 
discriminability of the method. Measures of reproducibility do not 
consider decision outcomes in relation to ground-truth; thus, they 
cannot provide a complete representation of the accuracy of an outcome 
or a method’s utility in discriminating between non-mated and mated 
comparisons. At most, they provide limited information regarding dis
criminability (i.e., imperfect reproducibility indicates imperfect 
accuracy). 

One approach to represent reproducibility data for a three-point 
conclusion scale is through a 3 × 3 table (e.g., Table 4). The data re
flected in 3 × 3 tables provide an indication of the adequacy of the 
procedures that define the method. A 3 × 3 table formed using outcomes 
that have been assessed as properly conforming to the procedures that 
define a particular method reflects the extent to which the method can 
produce consistent results and the variability between laboratories or 
analysts for a given input and conditions. To the extent that measures of 
reproducibility among such decisions (i.e., variability among labora
tories or analysts) are acceptable, the procedures that define the method 
and approaches for assessing conformance are adequate (i.e., the 
method is sufficiently well-defined and conformance to those proced
ures can be effectively demonstrated). However, if the measures of 
reproducibility among such decisions are such that it is common for 
different analysts to reach different decisions for a given input and 
conditions, or if the extent of the variability is otherwise unacceptable, 
then the procedures that define the method might be not be adequately 
specified (i.e., loosely defined) or the approaches for assessing confor
mance might not be sufficient (i.e., outcomes have been improperly 
assessed as conforming). 

The data reflected in 3 × 3 tables also provide an indication of the 
extent to which aggregate measures of discriminability (reflected by a 2 
× 3 table) across multiple analysts for a given method are relevant to a 
particular analyst’s application of that method. While high measures of 
reproducibility indicate that analysts are performing with similar levels 
of discriminability, this is not necessarily true when measures of 
reproducibility are lower. Although lower measures of reproducibility 
will have some impact on aggregate measures of discriminability, it 
might not be clear whether that impact is due to some analysts per
forming poorly and other analysts performing well or due to all analysts 
performing mediocre. In other words, when measures of reproducibility 
are low, there could be substantial differences between assessments of 
performance based on the pooled 2 × 3 discrimination table and the 
corresponding table constructed using data for any given individual 
analyst. In that case, when presented with an outcome from a particular 
analyst for whom individual performance data is not available (as is 
often the case in practice), there will be no way to know where that 
analyst aligns in terms of the full range of performance among other 
analysts represented by the aggregate performance data. Thus, aggre
gate measures of reproducibility provide a gauge by which measures of 
discriminability (based on outcomes from multiple analysts generally) 
are relevant to an outcome by a particular analyst (specifically). 

Measures of reproducibility (e.g., as reflected in 3 × 3 tables) can be 
obtained without knowing the ground-truth state (i.e., whether the 
comparisons are mated or non-mated), and can therefore be evaluated 
from actual casework data, at least conceptually. While these tables 
provide useful information, no summary from a 3 × 3 reproducibility 
table can provide the essential information contained in a 2 × 3 

10 For feature comparison disciplines, this can be accomplished using a 2 × 3 
table or equivalent rate parameters reflecting the occurrence of identification, 
exclusion, and inconclusive decisions as they relate to ground-truth of the 
compared items. A 2 × 3 table is used in this discussion; however, this 
recommendation generalizes to a 2xk table, where k is the total number of 
possible outcomes that can be produced by the method, such as feature com
parison disciplines that employ a 5-level scale, 7-level scale, 9-level scale, or 
another similar type of scale.  
11 Tables 3a and 3b lead to different ECE curves, which are reflections of each 

other about the vertical axis. However, permuting the column labels (i.e., 
identification, inconclusive, exclusion) in any 2 × 3 table will produce an 
identical ECE curve. This means that ECE curves also omit information relevant 
to assessing the weight of an expert opinion. See Appendix II for an example. 
12 For example, by calculating error rates after combining inconclusive de

cisions with identification decisions or exclusion decisions (i.e., treating all 
inconclusive decisions as if they were identification decisions or exclusion de
cisions), as was briefly discussed by Hofmann et al. [14] and Cuellar et al. 
(2024) [24]. Cuellar et al. [24] reference the Food and Drug Administration 
(FDA) Guidance for evaluating diagnostic testing when “equivocal” or “inde
terminant” results are obtained [25]. While the FDA Guidance provides a means 
of representing a bounded range for possible error rates, the FDA recognize “[t] 
his may or may not be reasonable for [a given] situation” [25]. In the context of 
forensic science, we do not believe the FDA guidance is applicable or appro
priate because it masks the actual outcomes produced by the method when 
tested, does not provide a complete representation of the performance of the 
method, and hinders the ability for a factfinder to assess the weight of a 
particular result. 
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discrimination table, such as those illustrated in Tables 1a, 1b, 3a, or 3b. 
The diagonal and off-diagonal elements of the 3 × 3 tables (labeled as 
“consistent” and “inconsistent” outcomes, respectively, in Table 4) are 
measures of (ir)reproducibility and must not be mistaken as suitable 
summaries of method discrimination. 

This issue with using measures of reproducibility as a means of 
representing measures of discriminability also extends to the use of any 
other criteria or factors that do not consider results in relation to ground- 
truth (e.g., based on assessments of method conformance or comparing 
outcomes from one method to those from another method).13 

2.3. Issue 3: lack of considerations for method conformance 

The third issue of concern is the limited appreciation for the 
importance of method conformance when assessing or reporting mea
sures of method performance. Method conformance is related to method 
performance. Performance data for one method is not relevant to a 
different method. If an analyst deviates from procedures for a particular 
comparison, they are no longer using the method specified by those 
procedures. Deviating from the procedures does not mean that an ana
lyst is necessarily performing better or worse than those analysts 
following the procedures; however, it does mean that performance data 
for that method (i.e., from the other analysts who did follow the pro
cedures, such as assessed during validation studies) might not 
adequately reflect the performance of the given analyst for the com
parison in question, which could leave little or no information with 
which to assess the reliability of the outcome produced by the non- 
conforming analyst. 

2.4. Evaluation of results 

Taking into consideration these three issues, in the context of 
measuring method performance, we stress that the discriminability of 
analysts’ decisions can only be assessed in terms of ground-truth, and 
because “inconclusive” decisions are not an assertion about the source- 
origin state of the items being compared, they are neither “correct” nor 
“incorrect.” However, in the context of assessing method conformance, all 
analysts’ decisions (including inconclusive decisions) should be assessed 
as “appropriate” or “inappropriate” in terms of whether they resulted 
from a proper application of a specified method. Thus, we agree with 
Dror and Langenburg [11] and Dror and Scurich [12], in the sense that 
one might wish to assess whether a particular decision, such as an 
inconclusive, is “justifiable.” Whether a particular decision is “justifi
able,” however, depends on whether the outcome of the examination 

was “appropriate” (i.e., produced by proper conformance to the method 
procedures, including relevant decision criteria, if applicable) and 
whether empirical measures relating to the performance of that method 
(i.e., discriminability and reproducibility) under conditions relevant to a 
particular case have been deemed “acceptable.” A result that is inap
propriate does not mean it is incorrect; however, it does mean that there 
is likely little to no data with which the weight of the result can be 
assessed. 

Consider the following two scenarios, for example, to elaborate on 
this point using a hypothetical method that includes explicit criteria to 
support decisions of identification or exclusion (e.g., specified minimum 
quality and quantity of corresponding or discordant features) and for 
which performance characteristics of the method have been deemed 
“acceptable” for use:  

(1) When the criteria specified by a method to support a decision of 
identification or exclusion have not been met:  
a. Inconclusive decisions that are produced under this situation 

represent an outcome that is expected when procedures that 
define the method are adhered to. Such decisions reflect that 
the method has been applied in accordance with the scope of 
its validation and in a manner deemed acceptable for use. 
Therefore, in this situation, such decisions are appropriate as 
they relate to assessments of method conformance. Of course, 
the more often a method produces inconclusive outcomes, the 
less useful it would be and less likely the method might be 
deemed “acceptable” for operational use.  

b. Identification or exclusion decisions that are produced under 
this situation represent an outcome that is not expected when 
the procedures that define the method are adhered to. Such 
decisions reflect that the method has not been applied in 
accordance with the scope of its validation of what has been 
deemed to be acceptable. Therefore, in this situation, such 
decisions are inappropriate as they relate to assessments of 
method conformance. It is important to note that even if such 
decisions happen to be correct (based on ground-truth), they 
still represent an outcome that is not in conformance with the 
specified requirements, or criteria, deemed to be appropriate 
and acceptable for the intended use (i.e., the risk and conse
quences of producing errors when such conclusive decisions 
are made for a given input and conditions have been deemed 
to be too great).  

(2) When the criteria specified by a method to support a decision of 
identification or exclusion have been met:  
a. Inconclusive decisions that are produced under this situation 

represent an outcome that is not expected when the proced
ures that define the method are adhered to. Such decisions 
reflect that the method has not been applied in accordance 
with the scope of its validation or in a manner deemed 
acceptable for use. Therefore, in this situation, such decisions 

Table 4 
An example 3 × 3 table representing the reproducibility of decisions for a method. The table reflects 
the extent to which multiple applications of the same method between different laboratories or 
analysts produce consistent results. A well-defined method will yield a high proportion of consistent 
outcomes. Inconsistent outcomes reflect the extent of variability between laboratories or analysts 
and any ambiguity on what the method can be expected to produce for a given input and conditions. 

13 For example, the 3 × 3 table in Fig. 1 by Dror and Scurich [12] reflects 
outcomes labeled as “correct” or “error” based on whether there is “sufficient 
information to justify such a decision,” as determined by method-specific de
cision criteria (e.g., suggested by Dror and Langenburg [11]), consensus 
opinion or majority outcomes (suggested by Dror and Scurich [12]), or algo
rithmic assessments (suggested by Dorfman and Valliant [17]). 
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are inappropriate as they relate to assessments of method 
conformance.  

b. Identification or exclusion decisions meeting the relevant 
criteria that are produced under this situation represent an 
outcome that is expected when the procedures that define the 
method are adhered to. Such decisions reflect that the method 
has been applied in accordance with the scope of its validation 
of what has been deemed to be acceptable. Therefore, in this 
situation, such decisions (identification or exclusion, depend
ing on the criteria relevant for each type of conclusive deci
sion) are appropriate as they relate to assessments of method 
conformance. Like the counter-scenario described above 
(where an outcome might be correct yet inappropriate), it is 
important to note that even if such conclusive decisions pro
vided under these circumstances happen to be incorrect, they 
still represent an outcome of the method that is in confor
mance with the specified requirements, or criteria, deemed to 
be appropriate and acceptable for the intended use. In other 
words, although there might be occasions where such de
cisions are incorrect, the tradeoff between correct and incor
rect outcomes has been deemed acceptable to permit use of the 
method. Of course, the more often a method produces incor
rect outcomes, the less useful it would be and less likely the 
method might be deemed “acceptable” for operational use. 

While method conformance and method performance are both 
important aspects for determinations of reliability, care must be taken 
not to confuse or conflate the two. These two concepts are distinct, and 
both must be accounted for separately when considering the reliability 
of a particular method (e.g., during validation testing) or evaluating the 
weight of a particular result of a method (e.g., in a particular case). For 
method conformance, assessments must be based on an empirical 
demonstration that the established requirements and criteria inherent in 
the method have been satisfied (e.g., relating to analyses of quality, 

quantity, similarity, or rarity of comparison features and any relevant 
and applicable decision criteria).14 For method performance, measures 
of discriminability must be assessed in terms of ground-truth (i.e., mated 
or non-mated comparisons) and measures of reproducibility must be 
assessed in terms of the consistency of decisions for a given input and 
conditions when the same method is applied by different analysts. 
Importantly, while measures of reproducibility provide an indication of 
the adequacy of the procedures that define the method (i.e., well-defined 
procedures produce more consistent results), demonstrating consistency 
of outcomes (e.g., agreement between analysts) post hoc is not sufficient 
to serve as a basis for assessing or demonstrating conformance to a 
method or labeling a result as “appropriate.” Conformance must be 
assessed and empirically demonstrated based on adherence to proced
ures that define the method. Once conformance has been demonstrated, 
performance data for that method can be used to evaluate the weight of 
an “appropriate” result. Fig. 1 uses a simplified flow diagram to illustrate 
the process for evaluating examination results and the distinctions be
tween results labeled as “appropriate” vs. “inappropriate,” “justifiable” 
vs. “not justifiable,” and “correct” vs. “incorrect.” 

3. Conclusion 

Different treatments of inconclusive decisions and calculations of 
error rates in forensic feature comparison disciplines have led to 
different representations and interpretations of the reliability of forensic 
science results. In this paper, we explored these issues in further detail 
from a metrology perspective and distinguished between the concepts of 

Fig. 1. Simplified flow diagram reflecting the process for evaluating examination results. The diagram illustrates the distinctions between results labeled as 
“appropriate” vs. “inappropriate,” “justifiable” vs. “not justifiable,” and “correct” vs. “incorrect.” 

14 Different approaches for analyzing quality, quantity, similarity, or rarity of 
comparison features (e.g., subjective versus algorithmic) or decision criteria or 
thresholds different from those specified by the method can impact perfor
mance and therefore reflect deviations from established procedures that define 
a particular method. 
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method conformance and method performance. We also considered the 
broader implications of these concepts when determining reliability of 
analysts’ examination results. 

The issues discussed in this paper have several practical implications 
to researchers and forensic service providers alike. They impact studies 
and activities relating to method validation and performance moni
toring, as well as how results are characterized and communicated—all 
of which are prescribed by ISO/IEC 17025:2017 [23], the prevailing 
international standard to which many forensic laboratories con
form—and the extent to which performance data are useful for de
terminations of reliability in casework.15 Major implications of these 
issues and key takeaways from this paper are as follows: 

First, determinations of the reliability of analysts’ examination re
sults require consideration of those results in the context of both method 
conformance and method performance—a result alone is not sufficient 
for one to assess its reliability. 

Second, error rates alone do not adequately characterize method 
performance for non-binary scales. Instead, the entirety of possible 
outcomes should be provided as it relates to measures of discriminability 
(i.e., 2 × 3 table) and reproducibility (i.e., 3 × 3 table) constructed from 
relevant validation testing. 

Third, inconclusive decisions are neither “correct” nor “incorrect” (in 
terms of method performance) but can be either “appropriate” or 
“inappropriate” (in terms of method conformance). 

Fourth, studies that purport to characterize the performance of a 
particular method (i.e., validation studies) are only relevant if confor
mance to that method can be demonstrated. Therefore, forensic service 
providers that do not have well documented and detailed step-by-step 
procedures that define their method, including conditions for method 
application and decision criteria for results for which performance data 
can be associated are unlikely to be able to meaningfully support a claim 
that the outcome of their examination is the product of a reliable 
method. 

Fifth, studies that characterize aggregate measures of performance 
across a discipline (e.g., black-box studies or interlaboratory 

comparisons) but do not specify the methods used can provide infor
mation about the performance characteristics that can be expected for 
the practice overall. While these studies are helpful to users of the in
formation, they cannot necessarily serve as a validation or provide 
generalizable performance characteristics of a particular method rele
vant to a specific case unless it can be shown that the same method was 
used by all participants. The development and use of standard methods 
by multiple laboratories is an important step toward reducing variability 
and ensuring that aggregate measures of performance can be repre
sented as generalized measures of performance for those methods. This 
standardization, in turn, strengthens the evidence-base16 supporting the 
validation of those methods and reduces the resource burdens that 
would otherwise be placed on individual laboratories to accomplish 
these studies independently. 
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Appendix I 

Explanation for the inadequacy of error rate summaries for factfinder decision making 

Ultimately, an expert’s opinion is information provided to a factfinder, who is tasked with assessing what weight to give that opinion as part of 
their decision-making process. Understanding what outcomes have been produced in known ground-truth scenarios (i.e., validation testing) can help 
factfinders assess the weight of an expert’s opinion. Oftentimes, attention centers around the error rates of a given method. However, two pillars of 
statistical inference dealing with optimal decision making—Bayesian decision theory [20] and the Neyman-Pearson Lemma [22]—show that like
lihood ratios, rather than error rates, are the quantities of interest from a 2 × 3 table for factfinders. Computing likelihood ratios requires assessing 
additional probabilities beyond those that represent error rates. Providing only error rates suppresses information relevant to assessing these addi
tional probabilities. We elaborate on these concepts below. 

Consider a factfinder evaluating the prosecution hypothesis Hp that the two impressions share the same source, relative to the defense hypothesis 
Hd that they do not. For simplicity, we assume that the factfinder has only two actions available—find the defendant “guilty” or find the defendant “not 
guilty.” If the factfinder finds the defendant guilty when Hd is true it will lead to a “wrongful conviction.” If the factfinder finds the defendant not guilty 
when Hp is true, the result will be a “false acquittal.” It is desirable to avoid both situations. Bayesian decision theory provides a principled approach 
for arriving at an optimal decision strategy and the reader is referred to Ref. [21] for a detailed discussion of how this theory can guide a decision 
maker in the criminal justice system. In general terms, Bayesian decision theory suggests that, among all available decision strategies, one should 
choose a decision strategy that minimizes the “expected cost” of the decision. 

Assessing the expected cost of a given decision requires the probabilities for various scenarios of interest and the cost the factfinder would associate 
with errant decisions under each of those scenarios. Suppose the costs the factfinder associates with a wrongful conviction or false acquittal are given 
by Cwc or Cfa, respectively. Suppose the factfinder has a prior probability p for Hp (and 1- p for Hd).17 This prior probability reflects the factfinder’s state 
of uncertainty before hearing from the expert and will be updated after learning the result from the forensic analysis. 

15 When considering these issues, it is important to keep in mind that ISO/IEC 17025:2017 specifies that the term “method” is “considered synonymous with the 
term ‘measurement procedure’ as defined in ISO/IEC Guide 99” and is referred to as being defined by a specific and detailed step-by-step procedure, referred to as a 
standard operating procedure [23,26].  
16 The term “evidence-base” refers to empirical data reflecting the performance of the method under varying conditions.  
17 The prior probability is independently determined by the factfinder based on their prior belief that Hp is true or Hd is true. 
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The process of updating uncertainty in response to new information can be conducted using Bayes’ equation, which requires a likelihood of the 
new information under each of the scenarios of interest. 

Table AI-1 provides the probabilities for the different outcomes an analyst might reach in Hp-true and Hd-true scenarios, respectively.18 In table AI- 
1, the value of P1 represents the probability that an expert would provide an “ID” after evaluating a pair of impressions for which Hp is true, and the 
value of Q1 represents the probability that an expert would provide an “ID” after evaluating a pair of impressions for which Hd is true.  

Table AI.1 
A 2 × 3 table of the probabilities for different conclusions an analyst might reach in Hp-true and Hd-true scenarios.  

Scenario Identification (ID) Inconclusive Exclusion Total 

Hp-true P1 P2 P3 100 % 
Hd-true Q1 Q2 Q3 100 %  

Let us focus on the situation where the analyst result is “ID”. In this case, the factfinder would like to update their prior probability estimate p in 
light of the expert’s decision. Using Bayes rule, we get: 

P
(
Hp

⃒
⃒Expert says ID

)
=

p • P1
p • P1 + (1 − p) • Q1

=

p
1− p •

P1
Q1

1 + p
1− p •

P1
Q1

Equation (1) 

We extended equation (1) to illustrate that the evaluation requires the values of P1 and Q1, and includes the ratio of P1/Q1. A factfinder can use 
their estimated posterior probability to assess their expected cost associated with a decision to convict or to acquit. The expected cost is used to assess 
whether one decision is better than another—a decision with a lower expected cost is preferred. In this setup, the expected costs for the factfinder’s 
available decisions are: 

Expected cost of acquittal = Cfa • P
(
Hp|Expert says ID

)

Expected cost of conviction = Cwc • P(Hd|Expert says ID),

where Cfa is the cost of a false acquittal and Cwc is the cost of a wrongful conviction. Ultimately, it is only the ratio C = Cwc/Cfa that matters when 
comparing expected costs of different decisions. The quantity C represents how many false acquittals the factfinder would exchange to avoid one false 
conviction. For simplicity, and without loss of generality, it is common to consider relative costs by taking Cfa = 1 and Cwc = C. Thus, we get: 

Expected cost of acquittal=P
(
Hp|Expert says ID

)

Expected cost of conviction=C • P(Hd|Expert says ID).

To apply the Bayesian decision-making paradigm, which is generally accepted as normative [21], the factfinder simply picks whichever choice has 
the lower expected cost. Note that equation (1) makes clear that this process depends on the value of P1/Q1. Thus, P1/Q1 is an important component 
of Bayesian reasoning. 

We continue this explanation to provide another theoretical motivation for the importance of P1/Q1. Under the above setup, a factfinder’s ex
pected cost of conviction would be lower than their expected cost of acquittal if and only if: 

C <
P
(
Hp

⃒
⃒Expert says ID

)

P(Hd|Expert says ID)
Equation (2) 

The right-hand side of this expression is the posterior odds. In the case where exactly two propositions are considered, Bayes rule shows this is equal 
to: 

P
(
Hp

⃒
⃒Expert says ID

)

P(Hd|Expert says ID)
=

P1
Q1

•
p

1 − p
Equation (3)  

where P1/Q1 represents the likelihood ratio (LR) that links the prior odds to the posterior odds. (A more general form of Bayes rule, in which the LR is 
replaced with a Bayes factor, applies to situations when more than two propositions are considered.) 

With some algebra, this means the factfinder’s expected cost of conviction would be lower than their expected cost of acquittal if and only if: 

P1
Q1

>C •
1 − p

p
=

C
Prior odds of Hp

= τ Equation (4) 

This provides a decision rule in the form of: “find the defendant guilty if and only if LR P1/Q1 is bigger than the threshold τ,” where τ indicates the 
factfinder’s threshold for how probative the expert’s opinion must be in order for them to decide the defendant is guilty. 

According to the Neyman-Pearson Lemma [22], decision rules based on whether or not a LR is greater than a given threshold are optimal in the 
sense that no other type of decision rule can produce a higher true positive rate for any given false positive rate (i.e., no other rule could produce more 
just convictions while maintaining a given rate of false convictions).19 Implementing this optimal decision rule required the value P1/ Q1. 

We have shown, under two hallmarks of statistical reasoning, that the ratio P1/Q1 is directly relevant to the factfinder when the expert says “ID.” 

18 A 2 × 3 table is used in this discussion; however, this generalizes to a 2xk table, where k is the total number of possible outcomes that can be produced by the 
method, such as those feature comparison disciplines that might employ a 5-level scale, 7-level scale, 9-level scale, or another similar type of scale.  
19 The optimality only applies with respect to expected performance according to the provided probabilities. In theoretical exercises where the probabilities 

represent long-run relative frequencies, the optimality is in terms of long-run observed performance. 
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Similar reasoning shows that the ratio P2/Q2 is important to the factfinder when the expert says “inconclusive,” and the ratio P3/ Q3 is important 
when the expert says “exclusion.” Thus, it is critical that factfinders have access to information that would assist their assessments of these ratios. 
Summarizing performance using error rates alone (or any other summary from which the 2 × 3 table cannot be reconstructed) deprives the factfinder 
of information relevant for updating their beliefs. 

Appendix II 

Limitation of Empirical Cross Entropy 

Empirical cross entropy (ECE) produces identical curves for tables AII-1 and AII-2 below. See equation 6.4 in Ref. [19]. However, the implied 
likelihood ratios for an “ID” in tables AII-1 and AII-2 are 59 %/1 % = 59 and 40 %/10 % = 4, respectively. This illustrates that ECE curves do not 
convey all the relevant information from a 2 × 3 table.  

Table AII.1 
A 2 × 3 table representing performance metrics relating to hypothetical Method A.  

Method A Identification (ID) Inconclusive Exclusion 

Mated Comparisons 59 % 40 % 1 % 
Non-Mated Comparisons 1 % 10 % 89 %   

Table AII.2 
A 2 × 3 table representing performance metrics relating to hypothetical Method B.  

Method B Identification (ID) Inconclusive Exclusion 

Mated Comparisons 40 % 59 % 1 % 
Non-Mated Comparisons 10 % 1 % 89 %  
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